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Abstract— Transport at the micro scale is an essential aspect
for many emerging areas including manufacturing systems at
the nanoscale. Transfer of beads decorated with cargo under the
influence of optical fields provide an attractive means of such
transport. Physical models that describe beads in optical fields
under the influence of thermal noise are available which yield
a qualitative understanding of the bead motion; however, it is
difficult to arrive at models that provide quantitative agreement.
The first contribution of the article is the determination of a
model of a bead under a static field realized by optical forces
where the model can be used to predict the motion of the bead
under a time-varying optical potential with high fidelity. Close
agreement between model based Monte Carlo simulations and
experimental observations is seen. The other contribution is a
strategy for directed transport of micron-sized particles that
utilizes the proposed models to arrive at conclusions which are
experimentally verified and easy to implement. The effectiveness
of this transport mechanism is justified based on splitting
probability computations. Applications to transport of cargo
across multiple locations and transport of multiple cargo are
experimentally demonstrated.

Keywords : Optical trap, Langevian equation, harmonic po-
tential, double well potential, thermal noise induced transport,
nano scale transport

I. INTRODUCTION
New abilities of measuring and manipulating matter at

the nanoscale hold the promise of designing and fabricating
materials with unparalleled specificity, by employing rational
control of matter at the nano and micro scale. An important
need for such a promise to materialize is that of transporting
micron sized or smaller particles from sources to destinations
in an efficient manner.

Unlike in macro scale processes, thermal noise [1] plays
a significant role in guiding and determining the results of
processes (such as transport) and shapes the matter at the
nanometer and smaller scales. With advances in nanotech-
nology and nanoscience, the effects of thermal noise can be
measured and thus nano/micro scale systems provide a means
to unravel the fundamental mechanism at play at smaller
scales ([2], [3]). In this article a key focus is on the transport
of particles using optical forces and noise. It is envisaged
that spherical particles are decorated with the cargo/material
to be transported and potential landscapes are created using
optical fields to provide motion in the desired direction. Here
it is impractical to pick and move each cargo from source
to destination as typically the number of cargo is very large.
The transport of multiple particles can be achieved in an
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Fig. 1. Representation of bead in a single optical trap. The equivalent gra-
dient force Fgradient balances the destabilizing scattering force Fscatter ,
creating a stable equilibruim point near the focus of the objective.

open-loop manner or can be guided by feedback ([4], [5]),
[6]. In many strategies such as Brownian Ratchets [5] the
effects of noise are used for enabling transport; thus it is
imperative to quantitatively analyze the effects of noise on
transport modalities. A key step is to obtain models that are
realistic which can be employed with quantitative precision
to design protocols for efficient transfer of particles at the
micron scale.

Arthur Ashkin [7] demonstrated that when a laser beam
is passed through an objective with appropriately high nu-
merical aperture , the momentum transfer from the reflected
and refracted rays onto microscopic particles in the vicinity
of the focus generates two kinds of forces on the parti-
cle. As is seen in Fig. 1, the gradient forces, that result
from the Gaussian intensity profile of the laser, balance
the destabilizing scattering force of the laser that push the
particle away from the focus, creating an equilibrium point.
Furthermore, if the particle is dislodged from that point,
it experiences a restoring force that pulls it back towards
the focal point, indicating that it is a stable equilibrium
point. A particle in such a stable trap experiences restoring
forces that vary linearly with small displacements away from
the focus, indicating potential of parabolic nature in the
region. Optical trapping is used to study transport of cells,
separation of microscopic objects and many other processes
[8]. However, the force felt by the particle in an optical trap
has a complex relationship with the shape of the particle,
the relative refractive index of the particle with respect to its
surroundings and on the relative position of the focal spot of
the laser beam with respect to the particle center of mass. For
understanding transport of particles, the force field generated
by the optical potentials has to be quantitatively understood
over large excursions of the bead positions and thus linear
approximations do not suffice. Moreover, the transport is
significantly affected by thermal noise in the optical potential
where a good understanding of the potential is crucial for
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making assessments on the effects of thermal noise. Although
the qualitative understanding and underlying principles for
such particle behavior are well understood, it is difficult to
arrive at a realistic model of this system using first principles.

Noise induced transport strategy based on realizing peri-
odic asymmetric potentials is also hypothesized to be the
underlying transport mechanisms for motor proteins like
kinesin [9]. Arrays of micron-scale potential wells, generated
with holographic optical tweezers [10] is shown to enable
transport. Potential profiles with multiple minimas, such as
a parabolic double well potential, represent an important
category of conservative force field which is used to analyze
structural phase transitions [11], isomerization reactions [12],
behavior of quantum mechanical systems [13], 1 bit memory
[14] and many other important physical systems. Studies
and theories on fundamental sources of noise that include
detailed studies of Brownian ratchet mechanisms [5], limits
on the work required to erase bits [15] and recent studies on
non-equilibrium statistical mechanics [16] can be evaluated
(where deeper insights can be sought) using optically realized
potentials with multiple minima.

In earlier efforts [17] the trap was modeled using a cubic
nonlinearity where linear and nonlinear feedback strategies
were employed to reduce the variance of the bead in the
trap. In our article, the potential felt by a bead under single
optical trap is characterized from experimental data and is
used it to arrive at models for a potential field that results
when the trap position is controlled and shared between
different locations by time multiplexing of the laser. It is
utilized to create an effective double well potential, following
which a micro scale transport strategy is presented where
thermal noise is used to achieve directed transport. It is
achieved by creating an asymmteric double well potential
by multiplexing for a longer duration in one location as
compared to other and justified based on computations
of splitting probabilities [18]. Furthermore, the proposed
method is easier to implement experimentally as it involves
simple multiplexing. A significant emphasis of the article
is to determine models which yield quantitative agreement
with experiment. Models to realize more complex transport
strategies where quantitative estimates, for example, of rates
of transitions can be determined are provided. Moreover, the
detailed description of effects of thermal noise presented
here can be used to obtain insights into other naturally
occurring nanoscale systems, such as motor-proteins, where
it is hypothesized that noise induces transport.

In Section II we present a brief description of our optical
tweezer setup. Section III describes the characterization of
a bead in a single well potential. In Section IV we use the
insights from Section III to develop models for a bead in
a double well potential and present experimental validation.
Section V deals with transport of a bead by creating asym-
metric double well potential with experimental verification
followed by Conclusions in Section VI.

II. BEAD IN A SINGLE WELL

A. Experimental Setup

Experimental data presented in this article is obtained
using a custom built optical tweezer setup as described in

[19], [20].

B. Modeling
In this section a realistic model of a bead in a viscous

medium in an optical trap is presented. The key objective is
to obtain a model which is capable of providing a quantitative
match with experimental observations. A dielectric bead in a
viscous fluid undergoes free Brownian motion [18], where,
the bead represents the system of interest and the viscous
fluid around the bead acts like a heat bath [21]. Under the
influence of a conservative force field the dynamics of the
bead in a viscous fluid is modeled by the Langevin equation
[1].

The stiffness of the trap depends on the location of the
center of mass with respect to the trap location. A Hookean
spring approximation holds for excursions of the bead away
from the trap location till a threshold is reached beyond
which the trapping force on the bead decays rapidly to
zero. A model for the potential experienced by a bead in
an optical trap U(x) which comprises of a reference energy
Ur, harmonic potential region until a width w and a flat
potential surface beyond this width is described by,

U(x) =

{
1
2kx

2 + Ur if |x| ≤ w
1
2kw

2 + Ur if |x| > w.
(1)

Here, k denotes the trap stiffness which can be altered by
changing parameters like intensity of the laser. Although
there exists a non-harmonic region beyond the width w [17],
the bead spends insignificant amount of time in the non-
harmonic region, hence the flat approximation is reasonable.

The discretization of Brownian motion dynamics and
Langevin dynamics using stochastic calculus [18] along with
the overdamped dynamics approximation leads to (2) and (3)
respectively [22],

x(t+ δt) = x(t) +

√
2kBT

γ
dt ν(t), (2)

x(t+ δt) = x(t)− k

γ
x(t)δt+

√
2kBT

γ
δt ν(t), (3)

where, γ is the viscous friction coefficient, kB is the Boltz-
mann constant, T is the temperature of the heat bath and
ν(t) ∈ N (0, 1). Here, N (0, 1) denotes the standard normal
distribution. As long as the bead is under the influence of
the potential, its dynamics is modeled by (3). Outside the
influence of the potential (i.e outside the width w) the bead
undergoes free Brownian motion and its dynamics is modeled
by (2).

A model for the potential beyond the harmonic range
is needed for addressing transport issues because the bead
needs to go through large excursion from the potential
minima where the linear approximation does not hold. The
simple model of a parabolic potential followed by a no
force regime is evaluated below using simulations and ex-
periments. Equations (2) and (3) are used to simulate the
dynamics of a bead in an optical trap using Monte Carlo
methods and are validated with experiments.
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Fig. 2. Potential for single well obtained from Monte Carlo simulatios
and experiments. Experimental observations and Monte Carlo simulation
predictions match well.
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Fig. 3. Estimating nature of single potential well beyond a distance w ≈
150 nm from the minima

C. Experiments
Experimental data is obtained using a custom built optical

tweezer that is used to trap a spherical polystyrene bead
(1 µm diameter). The bead position data is measured using a
quadrant photodiode (QPD). The spatial probability density
of the bead in equilibrium is given by,

P (x) = C exp (−U(x)

kBT
),

where C is a normalization constant. It follows that,

U(x) = − ln (
P (x)

C
). (4)

Here, the time scales of the experiment are long enough
to allow the bead to attain thermal equilibrium. The above
equation computes potential energy in units of kBT . The
probability distribution and potential for a bead in a single
potential well (Fig. 2) is obtained after tracking the bead
position (in a single optical trap) for a sufficiently long time
(thus allowing it to equilibrate). It shows a parabolic nature
until a finite distance w ≈ 150 nm from the minima. To
estimate the nature of the potential beyond w, the bead is
released from an initial location of ±500 nm and its position
is tracked from the moment of release till the bead attains
equilibrium. The bead effectively sees a flat potential beyond

w (see Fig. 3), indicating that beyond a distance w from the
minima of U(x), the bead dynamics are primarily dictated
by thermal noise with no influence from the optical trap.
The bead is seen to spend little time in the non-harmonic
region of the potential, justifying the approximation by a
constant beyond the harmonic range. The trap stiffness k =
0.0044 pN/nm is obtained from the bead position data using
the Equipartition Theorem [23],

1

2
k〈x2〉 = 1

2
kBT, (5)

where the room temperature T is 300 K , viscosity η =
8.9×10−4Pa.s [24] which results in γ = 8.3×10−9Ns/m.

D. Simulation Results

The integration time step δt = 10−5s is such where
δt � γ

k ∼ 10−3s. Note that γ
k represents the time constant

in (3). The system parameters k, γ and w for simulations
are obtained from experiments. The simulation results of
reconstructed potentials U(x) as shown in Fig. 2 are obtained
by simulating the trajectories of 100 particles. The position
trajectory of each particle is used to obtain the overall
effective potential experienced by the bead using equation
(4). It is seen in Fig. 2 that the potential reconstructed from
the Monte Carlo simulations is in very close agreement with
the one obtained from experiments.

In Fig. 3 potential reconstructed from the trajectories of
100 particles collectively with half of them initialized at
x(0) = 500 nm and other half from x(0) = −500 nm
is presented. It is evident that beyond the harmonic regime,
both experiments and simulation exhibit a predominantly flat
potential. Note that the transition region for both experiments
and Monte Carlo simulations is difficult to reconstruct from
position data, as the bead spends very less time in the
transition region [25].

Thus, it can be concluded that the model proposed above
matches experimental observations and lays the foundation
for studying the dynamics of a bead in multiple wells as
described below.

III. BEAD IN A DOUBLE WELL POTENTIAL

A double well potential can be realized by focusing the
laser alternately at two different positions, d,−d with a high
switching rate. The time scales of switching need to be less
than that of the characteristic time of the bead dynamics.
In our setup switching takes place in the order of 10 µs
while the time constant of the bead dynamics is of the
order of 1 ms. The ON time of the laser at d and −d
needs to be same in order to realize a symmetric double
well potential. Modulating the ON times at these locations
results in the creation of asymmetric potential wells, with
a deeper well being formed at the location with higher ON
time. Understanding of the dynamics of a bead in a double
well potential is fundamental to the development of the noise
induced transport strategy presented in the following section.

The model developed for a bead in single well potential
in the previous section is used to study the dynamics of
a bead in a symmetric double well potential realized by
multiplexing equally at locations d and −d. Let l(t) and
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r(t) be binary variables where l(t) = 1 if the laser at −d
is ON i.e. t ∈ [0, TON ], else l(t) = 0. Similarly r(t) = 1 if
the laser at +d is ON i.e. t ∈ [TOFF , Ttotal], else r(t) = 0.
One switching cycle lasts for Ttotal = TON + TOFF . The
potential V (x, r(t), l(t)) is given by :
V (x, r(t), l(t))

=


1
2k(x− d)

2 + Ur, if |x− d| ≤ w and r(t) = 1
1
2k(x+ d)2 + Ur, if |x+ d| ≤ w and l(t) = 1
1
2kw

2 + Ur, otherwise.
(6)

where, k is the trap stiffness (determined experimentally
using equipartition theorem), Ur is a constant reference
potential energy. The time constant of the laser switching
is significantly faster (∼ µs) than the time constant of the
bead dynamics (∼ ms). The potential V (x, r(t), l(t)) as
described in (6) is the instantaneous potential experienced by
the bead. This is in the time scales of order of switching of
the laser focus. The discretized Langevin and free Brownian
dynamics of the overdamned bead under the influence of
V (x, r(t), l(t)) are summarized in (7), (8) and (9).

x(t+ δt) = x(t)− k

γ
(x(t)− d)δt+

√
2kBT

γ
δt ν(t), (7)

if r(t) = 1 and |x− d| ≤ w

x(t+ δt) = x(t)− k

γ
(x(t) + d)δt+

√
2kBT

γ
δt ν(t), (8)

if l(t) = 1 and |x+ d| ≤ w

x(t+ δt) = x(t) +

√
2kBT

γ
δt ν(t), otherwise. (9)

Fig. 4 shows the effective potential determined from
Monte Carlo simulations by analyzing realizations of paths
taken by 200 particles initialized randomly between the right
and left potential wells and using (4).

To create the potential experimentally, the laser used to
create single optical trap is now multiplexed between two
points d and −d. At a given position −d distance away from
the center, the laser is kept on for a time TON and off for
TOFF with the laser at d ON when the laser is OFF at −d.
In the experiment we set the duty ratio TON/Ttotal = 0.5
with TON = 120 µs which is less than the time constants
of the bead (order of ms). Equal ON and OFF times creates
identical potential wells at both locations.

Fig. 4 shows the experimental realization of a double well
potential for d = 700 nm with the minimas formed at a
distance 688 nm from the origin. Data for the right well is
obtained after the bead is first initialized at 700 nm and then
the laser is rapidly switched between d and −d. For the left
well, the initialization is done at −700 nm. Similar to use of
(4) for determining potential from simulation data, (4) is used
to determine double well potentials from experimental data.
Thus, first the model for single potential well is determined
from experimental data and used to predict the potential that

Position of Bead (nm)
-1000 -500 0 500 1000

E
ne

rg
y 

(k
B
T

)

0

5

10

15

Effective Potential for d
f
 = 700 nm

Right potential well 
Left potential well 
Monte Carlo

Fig. 4. Double well potential for d = 700 nm obtained using Monte Carlo
simulations and experiments. Close match between Monte Carlo simulations
and experiments is seen.

results when the laser is switched between d and −d. A close
match between the effective potentials reconstructed using
experimental data and Monte Carlo simulations is seen in
Fig. 4. Note that though the linear range of PSD is limited to
±250 nm, bead position data beyond this limit till ±1000nm
is obtained using a multi-layered neural network [26].

It is observed in Fig. 4 that the barrier height for both the
potential wells is quite high for it to be quickly overcome
by noise. Thus when the separation between the wells is
significant and the wells are sufficiently stiff, noise induced
transition of the bead from one well to the other will take
very long (as compared to the time scales of the experiment),
explaining why we did not observe any such events. Note
that the widths of the two wells is ≈ 150 nm on either sides
of the minima, which is comparable with the single well
potential observed in Fig. 2.

In order to determine how the inter trap distance given
by 2d affects the nature of the average potential created, a
Monte Carlo simulation with d = 50nm for 100 particles is
performed (entirely determined by the single well character-
ization developed in the previous section) and the results are
shown in Fig. 5. The bead effectively experiences a single
well potential. To test this experimentally the laser is now
multiplexed between locations 50 nm and −50 nm. Fig. 5
indicates that effectively a single potential well is created,
showing a good match with Monte Carlo results. Thus it
can be inferred that the laser needs to be switched between
locations sufficiently far away for two parabolic potentials
to be realized as is satisfied in the case of Fig. 4.

When the separation between the traps is significant,
the average potential experienced by the bead due to fast
switching of the laser (at constant laser power) Ṽ (x) can be
shown to satisfy the relation in (10), where x is the position
of the bead with reference to the origin as shown in Fig. 4.
Ṽ (x) is the potential experienced by the bead in time scales
of the order of time constant of the bead (∼ 1ms).

Ṽ (x) =


1
2 k̃(x− d)

2 + Ur, if |x− d| ≤ w
1
2 k̃(x+ d)2 + Ur, if |x+ d| ≤ w
1
2 k̃w

2 + Ur, otherwise
(10)
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Fig. 6. A bistable potential with two parabolic wells with stable equilibrium
points of α and β and of width σ1 and σ2 respectively. The point ω
represents the barrier point.

Note that the stiffness k̃ in (10) is different from k in (6)
beacause k̃ is the average stiffness of the trap over the
switching cycles which includes phases where the laser was
ON and OFF at ±d. During the OFF phase the trap stiffness
is zero and hence it is expected that k̃ < k. Experimentally
k̃ = 0.0034 pN/nm whereas k = 0.0044 pN/nm.

A clear conclusion that can be reached is that the single
well characterization developed in the previous section can
be used to predict quantitatively the optical forces felt by the
bead under different strategies of time-multiplexing the laser
and creating different profiles. The quantitative agreement
holds for large excursions of the bead and is not restricted
to deviations about the local minima of the potentials.
Such models become useful for understanding noise induced
transport.

IV. NOISE INDUCED TRANSPORT

In this section, backed by an analytical explanation, a
method for transport enabled by using noise is reported. The
probability density P (x, t) of a bead in a viscous meduim
under a influence of a potential Ṽ (x) is described by the
following Fokker-Planck equation [27]:

∂tP (x, t) =
1

γ
∂x[Ṽ

′
(x)P (x, t)] +D∂2xP (x, t), (11)

where, D = kBT
γ . The stationary probability density is

Ps(x) = C exp[−Ṽ (x)
kBT

] where C is a normalization constant.
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Fig. 7. Ratio of splitting probabilities µ against duty ratio obtained
using Monte Carlo simulations. As the duty ratio increases µ increases
exponentially.

In Fig. 6 a potential W (x) is illustrated with α and β
being stable equilibrium points. Both wells are parabolic
and it is desired to transport the bead from α to β. The
probabilities of transitioning to β (forward transition) and α
(reverse transition) from an intermediate point x0 are called
splitting probabilities and are denoted by πα(x0) and πβ(x0)
respectively. The splitting probabilities are used to arrive at
a condition for transport from α to β.

Theorem 4.1: The splitting probabilities are given by

πα(x0) =

∫ β
x0
ps(x)

−1dx∫ β
α
ps(x)−1dx

, πβ(x0) =

∫ x0

a
ps(x)

−1dx∫ β
α
ps(x)−1dx

.

Proof: See [18] for the proof.
Note that πα(x0)+πβ(x0) = 1. Let us define µ :=

πβ(x0)
πα(x0)

as
the ratio of the splitting probabilities of transition to β and
α from the unstable equilibrium point ω. The ratio µ is a
measure of the effectiveness of the transfer mechanism from
α to β. From Monte Carlo simulations with d = 150 nm,
x0 = ω and a duty ratio of 0.5, it is observed as expected that
µ ∼ 1. To enable greater chances of the bead transitioning
from α to β, a higher value of µ is desired. This can be
achieved by increasing the duty ratio TON/Ttotal of laser
at β (or decreasing the duty ratio of the laser at α). Monte
Carlo simulations with d = 150 nm and x0 = ω are used
to obtain the variation of µ with duty ratios at −d (i.e.
the left well) which is demonstrated in Fig. 7. It is clearly
evident that as duty ratio increases µ increases, indicating
that the probability to transition into the β well increases
(while probability to jump back into the α well decreases)
rapidly as is seen in Fig. 7. Thus the ratio µ forms a metric to
judge the effectiveness of a transport mechanism; the higher
the µ, the better.

In the previous section it was demonstrated that a double
well potential comprising of two identical wells is realized
by multiplexing the laser at the two locations d and −d
with equal ON times. Unequal ON times of the laser en-
ables the creation of two unequal potentials. This can be
verified by averaging over time the instantanenous potential
V (x, r(t), l(t)) to obtain an effective potential Ṽ (x) with
both wells having different energies. Thus, modulation of the
ON times is equivalent to tilting of the effective potential
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Ṽ (x). This tilting is used to enhance thermal noise based
transfer of a particle from the shallower well to the deeper
well. The next theorem presents a justification for noise
induced transfer from the high energy well to low energy
well due to unequal ON times of the laser at d and −d.

Theorem 4.2: If α and β represent the stable equilibrium
points in the potential W (x) as shown in Fig. 6 such that
W (α) > W (β) and both the wells are parabolic with
widths σ1 and σ2 respectively, then the stationary probability
distribution is given by Ps(x) =



exp[
W (β)−W (α)−(1/2)W

′′
(α)(x−α)2

kBT
]√

2πkBT

W
′′

(β)
erf [σ2

√
W
′′

(β)
2kBT

]+

√
2πKBT

W
′′

(α)
exp[W (β)−W (α)] erf [σ1

√
W
′′

(α)
2kBT

]

,

if |x− α| < σ1,

exp[
W (α)−W (β)−(1/2)W

′′
(β)(x−β)2

kBT
]√

2πkBT

W
′′

(α)
erf [σ1

√
W
′′

(α)
2kBT

]+

√
2πKBT

W
′′

(β)
exp[W (α)−W (β)] erf [σ2

√
W
′′

(β)
2kBT

]

,

if |x− β| < σ2.
(12)

Proof: Given W (x) ={
W (α) + 1

2W
′′
(α)(x− α)2, if |x− α| < σ1

W (β) + 1
2W

′′
(β)(x− β)2, if |x− β| < σ2

(13)

Using Ps(x) = C exp[−W (x)
kBT

],

Ps(x) =

C exp[−W (α)
kBT

−
1
2W
′′
(α)(x−α)2

kBT
], if |x− α| < σ1

C exp[−W (β)
kBT

−
1
2W
′′
(β)(x−β)2

kBT
], if |x− β| < σ2

Then,
∫∞
−∞ Ps(x)dx = 1 leads to C−1 =√

2πkBT
W ′′ (α)

exp[−W (α)
kBT

] +
√

2πkBT
W ′′ (β)

exp[−W (β)
kBT

]. Substituting
C in the expression for Ps(x) leads to the result.
When W (α)−W (β) >> 0, then

Ps(x) ∼


0, otherwise

exp[
−W
′′

(β)(x−β)2
2kBT

]√
2πKBT

W
′′

(β)
erf [σ2

√
W
′′

(β)
2kBT

]

, if |x− β| < σ2

(14)

The above analysis holds even in the of presence of an
intermediate no force zone, as the potential energy of the
entire zone is higher as compared to the wells and hence
the probability of being in that zone is negligible. In steady
state the particle will be in the β well if the energy gap
between the two wells is extremely large. It is interesting
to note that although the potential W (x) in Fig. 6 has two
stable equilibrium points; in steady state all trajectories end
up in the well with the lowest energy with significantly
high probability. Thus even though we have multiple stable
equilibrium points (with different energies), effectively in
steady state only one "equilibrium" point is effective when
noise is present. We emphasize that the noise, therefore,
makes it possible to induce transport in a desired direction
which would be absent in a deterministic system. Also note
that the depth of all the wells is sufficient to trap cargo (the
transport would not be remarkable if one of the wells is
marginally stable; in which case it is intuitive to expect the
transport to the deeper well).
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Carlo simulation and Experiments. Close match between experimental and
Monte Carlo simulations is seen.

Validation of the theoretical analysis is presented below
using Monte Carlo simulations and experiments. Equations
(7), (8) and (9) with unequal ON times are used as model
for a bead in an effective double well potential.

It is desired that the bead, initially in the well at d transfers
to the well at −d. Hence, r(t) = 1 for a shorter duration as
compared to l(t) in a single cycle of focusing of the laser
at d and −d. The laser is focused at d for 80 µs and at −d
for 160 µs; where the net cycle lasts for 240 µs (duty ratio
TON/T = 0.667). Simulation results with 100 particles for a
duration of 200 seconds are shown in Fig. 8. It is seen that the
effective potential on the left is slightly deeper as compared
to one on the right. To see if higher duty ratio corresponds
to more tilting, simulation results for transferring the bead
from the right to left well for duty ratio = 0.833 are shown
in Fig. 9. The duration is 20 seconds as compared to 200
seconds for the 0.667 duty ratio case. It is observed that for
more than 90% of the particles to transfer to the left well, it
takes 20 seconds for duty ratio of 0.833 as compared to 200
seconds for the duty ratio = 0.667 case. Thus, a higher duty
ratio enables a faster transfer of particles owing to higher µ.
Experimental results corresponding to these cases are shown
in Fig. 8 and Fig. 9. It is seen that the effective potentials
reconstructed from Monte Carlo simulations and experiments
match closely. The tilting of the effective potential Ṽ (x)
is seen clearly, with the difference between the depths of
two wells greater in Fig. 9 than in Fig. 8. This method of
nanoscale transport has also been applied to transport a bead
across three wells as well as to transport multiple beads but
are not presented here due to space constraints.

V. CONCLUSIONS

Model for a single well potential was developed with
experimentally derived parameters and subsequently used to
quantitatively predict the optical forces felt by the bead under
a wide variety of optical field manipulation and different
energy profiles, such as a double well potential. It was shown
that the dynamics of a bead in a double well potential
V (x, r(t), l(t)), realized by multiplexing a single laser at
a high frequency, can be analyzed by using the effective
potential Ṽ (x) obtained by averaging over the instantaneous
potential profiles. A strong match of Monte Carlo simulations
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= 0.833 obtained using Monte
Carlo simulations and experiments. Model predictions match experimental
observations.

and experimental results was observed. The modeling opens
up possibilities for using systems persoectives that are very
effective in other nanotechnology platforms ([28], [29]). The
models quantitatively capture how noise can play a role in
transport of particles over micrometer spatial scales, enabling
a methodology to obtain directed transport between two
locations by multiplexing the laser for unequal times at each
location. This demonstrated a means to achieve transport
of a bead induced by thermal noise, providing a simple
strategy based on modulating duty ratios of the laser multi-
plexing. Analytical justification for directed transport based
on Kramer’s time and splitting probabilities was presented.
The explicit strategy was then experimentally implemented
and a remarkable agreement with Monte Carlo simulations
was found. It is observed that higher the duty ratio of the
laser multiplexing at the location to be transferred, faster the
transfer. Applications of this methodology to transfer across
multiple locations as well as transport of multiple particles
were experimentally demonstrated.
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